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Grinfeld instability on crack surfaces

R. Spatschek and Efim A. Brener
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 1 February 2001; published 24 September 2001!

The surface of a propagating crack is shown to be morphologically unstable because of the nonhydrostatic
stresses near the surface~Asaro-Tiller-Grinfeld instability!. We find numerically that the energy of a wavy
crack becomes smaller than the energy of a straight crack if the crack length exceeds a critical lengthLc

55.18LG (LG is the Griffith length!. We analyze the dynamic evolution of this instability, governed by surface
diffusion or condensation and evaporation. It turns out that the curvature of the crack surface becomes diver-
gent near the crack tips. This implies that the widely used condition of the disappearance ofKII , the stress
intensity factor of the sliding mode, is replaced by the more general requirement of matching chemical
potentials of the crack surfaces at the tips. The results are generalized to situations of different external loading.

DOI: 10.1103/PhysRevE.64.046120 PACS number~s!: 62.20.Mk, 46.50.1a, 81.40.Np
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I. INTRODUCTION

The uniform motion of a straight crack is well understo
@1#: A crack exceeding a certain critical length, the Griffi
length, starts to grow, since the energy gain due to ela
relaxation is bigger than the loss of surface energy that
pears as a consequence of the elongation of crack surfa

However, in experiments the surfaces of a crack are o
rough@2#. Some of these results are interpreted in the fram
work of models of cracks propagating in heterogeneous
dia. The other possibility for the roughening of the cra
surfaces is the instability of the straight motion of the cra
tip. Recent experiments revealed that many puzzling p
nomena in brittle fracture are related to an oscillatory ins
bility at velocities appreciably below the Rayleigh speed@3#.
There were several attempts in literature to investigate
stability of a propagating crack. The linear stability analy
of the quasistatic crack subject to mode I~opening mode!
loading has been performed by Cotterell and Rice@4# with
subsequent refinement by Adda-Bedia and Ben Amar@5#.
They employ the Griffith theory and the so-called princip
of local symmetry, i.e., the condition that mode II~sliding
mode! stress intensity factorKII vanishes at the tip of the
crack. They found that the straight motion of the crack b
comes unstable if the tangential loading exceeds a crit
value.

A full dynamical model, including the microscopic de
scription of the cohesive zone around the crack tip, has b
developed by Ching, Langer, and Nakanishi@6#. The cohe-
sive force in the neighborhood of the tip provides a fract
energy and a mechanism for regularizing the stress singu
ity; this model removes the need to speculate about a p
ciple of local symmetry. In addition to Refs.@4,5#, they
found a strong microscopic instability even for very lo
crack velocities, which depends very sensitively on tiny d
tails of the cohesive-zone model. However, later Langer
Lobkovsky @7# showed that these cohesive-zone models
the framework of a sharp-tip representation lead to unph
cally unreasonable features of the elastic stresses in spite
regularization by cohesive forces.

We strongly point out that in all these descriptions a cra
is recognized as the trace left behind by the propaga
1063-651X/2001/64~4!/046120~13!/$20.00 64 0461
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crack tip. In this sense its surfaces are ‘‘frozen’’ and n
subject to any additional dynamics.

On the other hand, another elastic instability has attrac
much interest in the recent time: Grinfeld@8# and Asaro and
Tiller @8# discovered that the energy of a non-hydrostatica
stressed solid with a flat surface can be diminished b
change of its shape and formation of deep grooves@9#. This
deformation is not due to elastic strain but to redistributi
of matter along the surface. Apart from surface diffusi
other transport mechanisms can be taken into accoun
well: For example, a solid phase that is in contact with
melt grows due to melting and recrystallization. Similarly
evaporation-condensation mechanism is also conceivabl

In all cases the central reason for this instability is agai
drastic decrease of elastic energy during the deformation
cess. This decrease is bigger than the accompanying incr
of surface energy for relatively long-wave interface pert
bations. Grinfeld performed a lowest order stability analy
where he described the temporal evolution of a curved in
face shapey(x,t)5y0 exp(ikx1lt). The line y50 corre-
sponds to the initial unperturbed interface of a tw
dimensional body in thex-y plane.

In the case of surface diffusion the time-evolution is go
erned by the dispersion relation

l5Dvsk
2F2s0

2~12n2!

E
uku2ak2G , ~1!

whereD is proportional to the surface diffusivity andvs the
atomic volume.E and n are the Young and Poisson coeffi
cients respectively,a is the surface tension.s05snn
2stt , with normal and tangent directionsn and t, reflects
the nonhydrostaticity of the stress tensors. Here one can
easily see that long-wave perturbations lead to the Grin
instability, whereas short-wave perturbations are hampe
by surface tension. The most unstable modekm53s0

2(1
2n2)/2aE evolves withlm5Dvsakm

4 /3.
Recently, it was emphasized in Ref.@10# that the condi-

tion of nonvanishings0 is fulfilled on the cut interfaces of a
straight crack that is loaded perpendicular to the crack
infinity. In this sense a straight crack cannot be a stable c
figuration under all circumstances, because slight defor
©2001 The American Physical Society20-1
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R. SPATSCHEK AND EFIM A. BRENER PHYSICAL REVIEW E64 046120
tions may reduce the total energy. In Ref.@10# it was pre-
dicted that this can happen provided that a certain crit
crack length is exceeded.

The aim of the current paper is a deeper understandin
this instability. It is organized as follows: In Sec. II we d
rive expressions to compare the energy of a static stra
and a wavy crack. In Sec. III the dynamics of crack def
mation beyond the threshold of instability is analyzed.
more detailed investigation of the behavior near the sing
crack tips is performed, and the situation is generalized
not necessarily parallel crack surfaces. In Sec. IV we c
sider different loading mode situations. Appendix A conta
a solution of the elastic problem of a crack with independ
surfaces. Appendix B is a proof for the equivalence of t
representations of the elastic energy that are derived
Sec. II.

II. STABILITY ANALYSIS

As mentioned above a crack with a length different fro
the Griffith length wants either to grow until the whole m
terial is fractured into pieces or to shrink until it disappea
completely. In order to study the quasistatic kinetics of
Grinfeld instability, this fast straight motion must be su
pressed. Formally we fix the tip positions of the crack a
only discuss shape deformations.

The key question is whether a straight crack is stable w
respect to small perturbations of its shape.

For the moment we restrict our considerations to the c
of parallel crack surfaces~mathematical crack!. Thus we can
describe the crack shape by a functiony(x), with 2L,x
,L ~see Fig. 1!. The tips are located atx56L, y50 and
the straight crack corresponds to the shape functiony(x)
[0. The goal of this section is to derive expressions for
energy change due to shape deformationsU@y#2U@0#. This
functional depends in a complicated, nonlocal way on
function y(x). We normalizeU@0#50. Since the homoge

FIG. 1. Geometry of a wavy crack in a two-dimensional soli
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` 5P acts perpendicular to the

straight crack, it is clear from symmetry that two cracksy(x)
and 2y(x) must have the same energy. ThusO(y2) is the
lowest nonvanishing contribution toU@y#.

From now on we assume the special case of a tw
dimensional plane-strain situation.

The basic idea to derive the change of energy during
formation of the crack shape is founded on the expression
the chemical potential of the solid phase at an interface@11#

ms5vsF f s01
12n2

2E
~stt2snn!

21akG . ~2!

Here vs is the atomic volume of the solid phase;f s0 is the
free energy density for a hydrostatic situation;a is the sur-
face energy;k is the curvature of the interface~counted posi-
tive for a convex solid!.

In principle one has to remove matter from one front
the crack and deposit it at the opposite one. In this way
originally straight crack is deformed to its final wavy shap
This procedure is outlined in Fig. 2.

Later different mechanisms for this transport process w
be discussed: The removed matter can either cross dire
through the interior of the crack or diffuse along the surfac
The first case corresponds to a evaporation-condensa
process; in the second case of surface diffusion the ma
must wander around the crack tips. For energetic consi
ations the precise transport process is of course irrelevan
becomes important later for dynamical approaches.

An easy way to calculate the energy of a perturbed cr
was proposed in Ref.@10#. The total energy change consis
of a change of both the surface energy and the elastic ene

First a deformation increases the arc length of the cr
and therefore the surface energy. To the lowest nonvanis
order this change is given by

Us52aE
2L

L ~y8!2

2
dx. ~3!

The factor 2 appears because the crack consists of two in
faces.

Additionally, the change of geometry also alters t
stored elastic energy. We calculate this energy change in

FIG. 2. Deformation of the crack shape as a result of a resh
fling of matter. This can happen either directly through the crack
along the crack surfaces and around the tips.
0-2
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GRINFELD INSTABILITY ON CRACK SURFACES PHYSICAL REVIEW E64 046120
steps: First we keep the stress field of the straight crack
tificially fixed in the whole solid while the material is re
shuffled along the two sides of the crack. One uses the
pression for the chemical potential~2! to calculate the
required energy. When the final shape is reached, the u
condition of vanishing normal and shear stress along
crack surfaces,snn5snt50, is clearly violated. Therefore
one has to adjust the stress appropriately by adding a c
pensation fields (1) and book keeping the relaxation of e
ergy.

Let us begin with the first contribution to the elastic e
ergy. The analytic continuation of the stress field in the
cinity of a straight crack up to first order is given by~see for
example@12#!

sxx52PF17
2L2y

~L22x2!3/2G1O~y2!,

syy501O~y2!,

sxy501O~y2!. ~4!

The minus branch insxx corresponds to the upper, the plu
branch to the lower crack surface. Therefore the elastic c
tribution to the chemical potential~2! at the upper crack sur
face is~the shape-independent parts are irrelevant and th
fore neglected!

@ms#u52
2vsP

2~12n2!L2

E~L22x2!3/2
y. ~5!

At the lower interface@ms# l52@ms#u . We note that due to
the fixing of the stress field the chemical potential is a
fixed during the redistribution of matter. It results in

Uels522E
2L

L E
y50

y(x)@ms#u

vs
dy dx

5E
2L

L

dx
4P2~12n2!L2

E~L22x2!3/2

y2

2

52
2P2~12n2!

E E
2L

L

dx~y2!9AL22x2. ~6!

As one can see from the second representation this en
contribution is always positive, i.e., stabilizing. The last re
resentation results from integration by parts which requ
the boundary conditionsy(6L)50 and corresponds to fixe
crack tips.

The second contribution to the change of the elastic
ergy comes from the adjustment of the stress field. From
~4! it follows that after performing the first step the she
stress along the new crack surfacey(x) is snt5Py8
1O(y2). To this order the normal component is already c
rect: snn50. The compensation fields (1) introduced above
must cancel these boundary values and vanish at infinit
corresponds to the stress field of a straight crack with sur
tractionsTs52Py8 andTn50.
04612
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We imagine to create this crack by cutting the solid, sta
ing at the left tipx52L and proceeding tox51L. The
associated mode II stress intensity factorKII is calculated in
@4#. Assume that the current crack tip position isx5L8 with
2L,L8,L, it is given by

KII ~L8!5A 2

p~L81L !
PE

x52L

L8 A L1x

L82x
y8~x!dx. ~7!

The energy release rate coming along with an increase o
crack length bydL8 is given by Irwin’s formula@13#

Uelu52
12n2

E E
2L

L

KII
2 ~L8!dL8. ~8!

Finally the total energy of the wavy crack is given by th
sum

U@y#5Us1Uels1Uelu . ~9!

Alternatively, and more intuitively, the total energy of th
crack can be calculated as follows: As before one can im
ine to reshuffle the matter along the crack surfaces to ob
the final wavy shape, but this time the stress field is not fix
during the redistribution. At each step during this process
condition of vanishing normal and shear stress at the cr
surfaces must be fulfilled. This requires the solution of t
elastic problem of a wavy crack; its solution is derived
Appendix A for the generalized situation of not necessa
parallel crack surfaces. Inserting these expressions~A14!–
~A16! into the chemical potential~2! gives to first order iny

@ms#u/ l5vsF f s01
12n2

2E H P27
4P2

p~L22x2!1/2

3PE
2L

L y8~ t !AL22t2

t2x
dt

7
4P2L2

~L22x2!3/2
y~x!J 6ay9~x!G ~10!

~P denotes the principal value of the integral!. In contrast to
the former approach, the stress distribution changes du
the rearrangement, and therefore the chemical potential~10!
depends on the ‘‘intermediate shape’’y(x). The total energy
can now be obtained by integration

U52E
2L

L E
y50

y(x)@ms~x!#u2@ms~x!# l

vs
dy dx, ~11!

similar to Eq.~6!. This results in a completely different rep
resentation ofUelu .

Though it is clear from physical reasons that both a
proaches should give the same result, this is not dire
visible from the expressions. In particular, two cracksy(x)
andy(2x) should have exactly the same energy. Integrat
the chemical potential~10! clearly reflects this situation
Also Us and Uels obey this symmetry but this property i
0-3
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R. SPATSCHEK AND EFIM A. BRENER PHYSICAL REVIEW E64 046120
less clear forUelu . Since we started to cut the solid at its le
tip for derivation ofUelu , the resulting formulas~7! and~8!
seem to violate this parity invariance at a first glance. N
ertheless it is possible to give a proof of the equivalence
these two different approaches to calculate the energy of
system. It is sketched in Appendix B. The idea is to reder
the expression for the chemical potential~2! from the total
energy~9!, which proves the equivalence of both ways. Co
sequently the symmetry condition is also fulfilled, or,
other words, the energy operatorU commutes with the parity
operatorP̂, which is defined by (P̂y)(x)5y(2x).

A. Numerical results

Based on the energy expressions derived in the prev
section we are now able to perform a full stability analysis
the problem. We remind that we assignedU50 to the
straight crack and hence are interested in the occurrenc
U@y#,0 for a wavy crack shape. One can easily check t
all parameters of the problem appear only in the combina
LG52Ea/p(12n2)P2 ~Griffith length! in the total energy
~9!, apart from common prefactors. Thus the minimum e
ergy with respect to all possible crack shapes with a cer
lengthL is simply a function of one single parameterL/LG ,
which easily allows to trace the threshold of instability.

In Ref. @10# minimization has been performed by a vari
tional procedure using only a limited set of analytical rep
sentations of shape functions. Here we solve the prob
numerically and find the real shape without such restricti
by a full minimization procedure. For that we have chos
a Fourier representation of the crack functiony(x),
xP@2L,L#

y~x!5 (
k51

`

bk sin
kp~x1L !

2L
, ~12!

where the upper summation limit is replaced by a sufficien
large cutoff K. Since this is linear in the unknown coeffi
cientsbk and the total energy is quadratic in the amplitu
y(x), we can write the total energy as quadratic formU
5Dikbibk with a real, symmetricK3K matrix D that de-
pends only onL/LG . This matrix can be computed almo
completely analytically.

In order to find the minimum of the free energyU, a
normalization condition is needed, since the amplitude is
restricted in our lowest order calculation. The choicebkbk

5LG
2 is convenient but arbitrary. In this case the minimum

energy is exactlylsLG
2 , wherels is the smallest eigenvalu

of the matrixD.
It must be remarked that the threshold of instabil

U(L)50 is not affected by the specific choice of normaliz
tion: Minimization requires

d

dy~x!
~U@y#2l̃ f @y# !50, ~13!

where f @y#50 is the arbitrary normalization condition
coupled to the energy by the Lagrange multiplierl̃. By con-
struction this is equivalent to
04612
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vs
@ms#u2l̃

d f

dy
50, ~14!

or, by multiplication withy(x) and integration

l̃5
U

E
2L

L d f

dy

y~x!

2
dx

. ~15!

Thus for the threshold of instability, characterized byU50,
we havel̃50 and the normalization condition becomes
relevant in Eq.~13!. Consequently the critical length of th
crack and its corresponding shape are universal. For
other length the results depend on the normalization co
tion. Later the physical meaning of the condition chosen h
will become more obvious.

The concrete normalization condition given above
equivalent to

E
2L

L

y2~x!dx5LLG
2 .

Therefore Eq.~15! reads

l̃5
U

LLG
2

~16!

and the minimization condition is equivalent to

7
2

vs
@ms#u/ l22l̃y~x!50. ~17!

Figure 3 shows the minimum energy versus crack leng
For L.5.188LG the straight crack becomes unstable and
vors a wavy shape. The critical shape is plotted in Fig. 4

All results turn out to be very robust, and alreadyK
'20 harmonics are sufficient to describe the shape q
accurately. The code has been checked very carefully aga
analytically known energy values for special shapes. The
sult is consistent with the predictionLc,6LG in Ref. @10#.

As we have already seen, the energy operator comm
with the parity operatorP̂ and therefore all eigenfunction

FIG. 3. Minimum normalized energy of a curved crack.
0-4
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GRINFELD INSTABILITY ON CRACK SURFACES PHYSICAL REVIEW E64 046120
are either even or odd. It turns out that the most unsta
mode, which belongs to the smallest eigenvalue, is an e
function. Thus only terms with oddk appear in the represen
tation ~12!. Yet there are still certain length intervals whe
the optimum solution is an odd function.

III. DYNAMICS OF GRINFELD INSTABILITY

In this section we go beyond the previous static desc
tion where we used the energy to judge whether a cer
configuration is stable or not. Here we analyze how a giv
shape develops in time. If it decays to the straight crack,
crack is stable; otherwise a perturbation develops further
further. This allows to calculate the threshold of instability
a different way and to compare the results with the pred
tions of the previous section. Again we calculate the che
cal potential only up to first order~which corresponds to a
quadratic energy!. In this sense we cannot expect to obta
new results about the long-time behavior of unstable so
tions. Especially we cannot describe the known groove
structures that are governed by nonlinear effects@9#. Never-
theless this approach is useful because it allows to st
more carefully the behavior near the crack tips. This reg
cannot be described by the previous static approach sinc
Fourier representation produces strong oscillations there
stead, we use a real space representation here. By con
trating more grid points in the sensitive tip region we a
able to study the peculiarities occurring there quite ac
rately.

Again we start with the special case of coherent surfa
yu(x)5yl(x). Later we will generalize this situation.

Redistribution of matter is driven by spatial variations
the chemical potential of the solid phase along the cr
surfaces. We analyze two different transport mechanism
this section: Surface diffusion is described by the equatio

]y~x,t !

]t
52D¹2ms~x,t !. ~18!

From the representation of the chemical potential, explic
given in Eq.~10!, it is clear, that Eq.~18! is of fourth order
with respect to the spatial derivatives. Basically we are

FIG. 4. Universal shape of the critical crack,L55.1882LG .
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terested in a stability analysis, and therefore we look
eigenfunctions of this equation,y(x,t)5y(x)exp(lt). This
leads to

ly~x!52D¹2m̂s@y#, ~19!

where we writem̂s for the linear operator of chemical poten
tial that depends nonlocally on the shapey(x).

A simpler dynamics is described by the equation

]y~x,t !

]t
5Decms~x,t !, ~20!

with the kinetic coefficientDec . It corresponds to a direc
transport of matter through the void of the crack. It is simi
to evaporation-condensation~EC! processes known, e.g
from the theory of phase separation. We mainly introdu
this mechanism because of its simplicity that is useful
testing purposes of the numerical code.

In both languages the threshold of instability correspon
to l50 and should be the same. As before, the equation
motion depend only on the single adjustable parame
L/LG . Thus the different eigenvalues are also only a fun
tion of this parameter, and by simple plotting one can ea
detect the crossing pointl(Lc /LG)50.

Both mechanisms are purely dissipative and we exp
that all eigenvalues are real. One can readily check that
operatorm̂s fulfills the self-adjointness condition (m̂sy1 ,y2)
5(y1 ,m̂sy2) with respect to the standard scalar produ
(y1 ,y2)5*2L

L y1(x)y2(x)dx. Therefore at least the secon
mechanism allows only real lambdas.

For the diffusion process we note that the operator2¹2 is
positive definite; one can prove that under these circu
stances the compound operator2¹2m̂s indeed has only rea
eigenvalues@14#.

Since the eigenvalue equation for the meltin
recrystallization mechanism is a second order ordin
integro-differential equation, we require two boundary co
ditions. As before we demandy(6L)50. Surface diffusion
requires two additional boundary conditions. Since t
chemical potential on the upper and lower surface of
crack @apart from the trivial constant contributions in E
~10! that we ignore from now on# is the same but with op-
posite sign, the condition of a unique value ofms requires
ms(6L)50. Otherwise a fast redistribution of matter, drive
by the force difference@ms#u(6L)2@ms# l(6L) would take
place in the microscopic region around the crack tips, u
the above condition is satisfied. In both cases a critical cr
is characterized by the conditionms(x)[0.

We use the notationY5(y,y8,ms ,ms8) and discretize
these functions on the interval@2L,L#. Then the linear
equation~19!, together with the boundary conditions, can
expressed asA•Y50 with a real, quadratic matrixA that
depends on the control parameterL/LG and on the eigen-
value l. Since this equation is nonlocal the matrix is n
sparse; nontrivial solutions correspond to the condit
detA50, and we use a standard matrix decomposition
0-5
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R. SPATSCHEK AND EFIM A. BRENER PHYSICAL REVIEW E64 046120
detect it@15#: A5Q•R, whereR is an upper triangular ma
trix, Q is orthogonal and positive definite, and thus deA
5) iRii .

The allowed eigenvalues as a function of the crack len
are shown in Figs. 5 and 6.

To each length belongs an infinite number of eigenfu
tions with different eigenvalues; here only the biggest eig
values near the threshold of instability are visible. A clos
inspection shows that the first crossing of thel50 axis hap-
pens atLc55.187LG , which is in excellent agreement wit
the previous, static prediction.

Some of the shape functions are illustrated in Fig. 7.
All eigenfunctions are even or odd, but it turns out th

not always the even function is the most unstable one. O
can clearly see that the two biggest eigenvalue function
surface diffusion intersect at aroundL'5.3LG and again at
L'6.8LG ; in between the odd branch is the most unsta
one. This phenomenon occurs again at bigger crack len
and also for the EC mechanism.

In both cases the most unstable modes are functions
consist of only one-half or one full period. With descendi
eigenvalue the number of nodes increases. In this sens

FIG. 5. Eigenvalues of the surface diffusion vs crack length.
detect nontrivial solutions through a change of sign of the deter
nant. Whenever two curves intersect or come close to each o
this sign does not change. This leads to missing points in
diagram.

FIG. 6. The same relation for the EC mechanism.
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eigenvalue problem is comparable to simple quantum m
chanical eigenstates, e.g., of a single particle in a box.

It is also instructive to use a simplified scaling analysis
the situation: The dispersion relation~1! of the free interface
defines a characteristic wavelengthLc;kc

21;Ea/(1

e
i-
er,
e

FIG. 7. Some eigenfunctions of surface diffusion.~a! L
54.26LG ,l520.047, ~b! L55.18LG ,l520.096, ~c! L
56.00LG ,l520.167, ~d! L57.25LG ,l520.167. l is given in
units of Davs /LG

4 .
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GRINFELD INSTABILITY ON CRACK SURFACES PHYSICAL REVIEW E64 046120
2n2)s0
2 . The tangential stress at the crack surfaces isstt

5s0;P. ThusLc;LG which underlines the fact that Grin
feld instability and the Griffith condition for crack growt
are basically of the same origin, namely, the competit
between surface and elastic energy. Since the tip posit
are fixed, only certain perturbation waves fit into this inte
val. In particular, a minimum crack lengthL;LG must be
exceeded to allow at least for one unstable mode.

For the critical crack withL5Lc , the shape is indistin-
guishable from the static picture 4 for both mechanisms.
note that also for other lengths the shape functions of the
mechanism are very similar to those of the diffusion mec
nism.

If one plugs in the ansatzy(x,t)5y(x)exp(lt) into the
equation of motion~20!, one immediately arrives at the con
dition ~17! for the minimum of the static energy of the la
section with the amplitude constraint applied there. Now
see that this arbitrarily chosen constraint is related to the
mechanism if we identify

l52
UvsDec

LLG
2

~21!

with the energyU of the ~normalized! crack. First, it is clear
from this equation that a stable crack in the static sense
U.0 is also stable in the dynamic sense,l,0, and vice
versa. Furthermore, the lower the crack energy for a gi
length, the faster the instability develops. The relation~21!
also holds numerically: Mapping the two graphs Figs. 3 a
6 using Eq.~21!, lets the energy curve exactly conceal t
curve of the most unstable eigenvalue.

In the case of very long cracks the spectrum becom
more and more continuous and finally coincides with
spectrum~1!, since the boundary conditions become less
portant. All eigenvalues that are smaller than the maxim
value of the Grinfeld spectrum,l<lm , lead to possible so
lutions. We indeed observe a very good agreement with
expectation forL5100LG in our numerical calculations; in
particular, the discrete eigenvalues of the finite geometry
come very dense and hard to separate. Thus we are ab
reproduce the dispersion relation~1! for the case of indepen
dent interfaces.

A. Near-tip behavior

The tip of a crack is typically subject to divergencies. F
example, the stress field behaves likes;r 21/2, wherer is
the distance from the tip. From Eq.~10! it follows readily
that the different contributions to chemical potential beha
like

msur;y9~x!, ~22!

mels;~L22x2!23/2y~x!, ~23!

melu;~L22x2!21/2PE
2L

L

y8~ t !
AL22t2

t2x
dt. ~24!
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For L5Lc , they must cancel each other everywhere on
crack: ms1mels1melu[0. It is difficult to justify this can-
cellation for the Fourier representation~12! of the previous
section because of strong oscillations near the crack
though it holds nicely in the center regionx'0. The reason
is that though the full Fourier series with summation cut
K→` is complete,K,` always implies that nonvanishin
values ofy9(6L) can only be achieved asymptotically. Wit
the real space representation we do not suffer from this p
lem, and indeed this cancellation seems to be verified,
Fig. 8.

In Ref. @10# the guess was made that the divergent c
tributions ofmelu andmels cancel each other at the crack ti
This is equivalent to a vanishing of the total mode II stre
intensity factorKII

(tot) . The expression for this value has be
derived in Ref.@4# for the case of a slightly wavy crack. T
first order iny it is given by @5#

KII
(tot)5KII ~L !1ALpPy8~L !/2. ~25!

It reflects exactly the decomposition of the elastic field into
stabilizing and unstabilizing part as used in the first sect
of this paper. The divergent component of the tangen
stress along the surfaces of a wavy crack is given by

stt
(sing)52

2KII
(tot)

~2pr !1/2
~26!

in the close vicinity of the tip. One can easily check that t
second contribution toKII

(tot) produces exactly the divergen
part of the stress field~4! and therefore of the chemical po
tential mels in Eq. ~23!.

It is clear from the representation~22!–~24! above that a
cancellation of the divergencies ofmelu andmels is equiva-
lent to a finite crack curvature at the tips and, from Eq.~26!,
also to the vanishing of the stress intensity factorKII

(tot) . The
latter criterion is widely discussed in literature as a criteri
for the direction of crack propagation, referred to as the ‘‘c
terion of local symmetry.’’ It states that a crack propagates

FIG. 8. Contributions to the chemical potential of a critic
crack withL55.187LG ,l50,M5400.
0-7
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R. SPATSCHEK AND EFIM A. BRENER PHYSICAL REVIEW E64 046120
the direction of maximum energy release, maximum ho
stress or stationary Sih energy density factor~see references
in @4# for a survey!.

Surprisingly the calculations show that this criterion is n
fulfilled here. It turns out that a divergent curvature cont
bution remains. Calculations with extreme accuracy raise
claim thaty(r );r 1r g at the tips of a critical crack withL
55.187LG , with g'1.5 ~see Fig. 9!. For these calculations
it is necessary to concentrate as many grid points as pos
in the vicinity of the tips where the shape functions va
crucially, whereas a moderate accuracy suffices in the mid
part.

The reason for this unexpected behavior is that
KII

(tot)50 criterion maximizes only the release of elastic e
ergy, and does not take surface energy into account; it sim
compares different directions of elongation and leaves
hind the crack as the track of the tip. In our case, the el
gation is completely forbidden, but we allow for a deform
tion of the already existing crack. Therefore complete
different crack shapes are compared to each other to m
mize the total energy. For fast crack growth the deformat
can be neglected since it is driven by the slow surface di
sion, but it is still an unanswered question howKII

(tot)50 and
m5const can be reconciled for a slow motion of the t
when both processes, crack propagation and Grinfeld in
bility, are present.

B. Grinfeld instability on incoherent crack surfaces

In this subsection we give up the restriction of paral
crack surfaces. Both surfaces are described by indepen
shape functionsyu(x) and yl(x), provided thatyu/ l(6L)
50. Of course it must be assured that the two branche
the crack do not overlap, i.e.,yu(x).yl(x). However, a
small opening of the crack is present due to the applied lo
ing even in the case of a straight crack. Consequently a s
perturbation with a sufficient small amplitude does not le
to an intersection.

The dynamics of both interfaces is again described
surface diffusionẏu/ l57D¹2mu/ l and the boundary condi
tions

mu~6L !5m l~6L !, yu/ l~6L !50 ~27!

and also flux conservation

mu8~6L !52m l8~6L !. ~28!

This implies the mass conservation law

E
2L

L

@yu~x!2yl~x!#dx5const, ~29!

which is trivially fulfilled for parallel crack surfaces.
For the moment we restrict our considerations to antip

allel crack surfacesyu(x)52yl (x)5y(x). In this casemu(x)
5m l(x)5m(x) holds everywhere and thus the conditio
~27! is satisfied automatically. Equation~28! requires the dis-
appearance of the tip fluxm8(6L)50.
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We analyze this problem in the same way as before
turns out that the spectrum is very similar to that of coher
crack surfaces. The main result is that the critical length
slightly bigger in this arrangement:Lc

(anti)55.212LG . It
means that during a slow elongation of the crack the para
modes will become visible first.

It is now easy to generalize this statement to arbitr
crack surfacesyu/ l . Since we are basically interested in th
threshold of instability, we use again the energetic argum
of the last section. To understand this behavior, we dec
pose the shape functions into a parallel and an antipar
contribution:

ypª~yu1yl !/2, yaª~yu2yl !/2.

From Eqs.~2! and~A16! it follows readily that the chemica
potential decomposes similarly,

mu~x!5mp~x!1ma~x!,

m l~x!52mp~x!1ma~x!, ~30!

with

mp~x!5vsF12n2

2E H 2
4P2L2

~L22x2!3/2
yp~x! ~31!

2
4P2

p~L22x2!1/2
PE

2L

L yp8~ t !

t2x
AL22t2dtJ

1ayp9~x!G , ~32!

ma~x!5vsF f s01
12n2

2E H P22
4P2L2

~L22x2!3/2
ya~x!

2
4P2

p
PE

2L

L ya8~ t !

t2x
dtJ 1aya9~x!G . ~33!

The crucial observation is that the total energy

U5
1

2vs
S 2E

2L

L

mu~x!yu~x!dx1E
2L

L

m l~x!yl~x!dxD
~34!

becomes diagonal in this representation:

U52
1

vs
E

2L

L

~mpyp1maya!dx. ~35!

Thus the parallel and antiparallel configurations are
‘‘principal axes’’ of the energy ellipsoid. We can therefo
conclude that the parallel arrangement of surfaces ind
gives the most unstable configuration.
0-8
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GRINFELD INSTABILITY ON CRACK SURFACES PHYSICAL REVIEW E64 046120
IV. CRACKS UNDER GENERALIZED MODE I LOADING

So far in all situations a pure uniaxial stressP.0, per-
pendicular to the crack, has been exerted on the solid. N
we add an additional stress componentPx at infinity parallel
to the crack (x direction!. In the framework of a linear theory
of elasticity this homogeneous field is simply added to
former field. Since it gives a new contribution to the she
traction of a wavy crack, the elastic energy is modified. W
declarePx to be positive for a tensile stress and introduce
dimensionless parameterb5Px /P. One easily derives

Uels~b!5~12b!Uels~b50!,

Uelu~b!5~12b!2Uelu~b50!. ~36!

Hence the critical length becomes a function ofb as well;
this dependence is plotted in Fig. 10. Forb50 we retain the
former resultLc55.18LG .

The most interesting range is 0,b,1: The pure tensile
loading perpendicular to the crack causes a tangential s
sxx52P along a straight crack. The additional loadingPx
.0 reduces this value tos05sxx52P1Px,0 and thus
hampers the evolution of the Grinfeld instability. Therefo
the critical length increases in comparison tob50. For b
→1 the nonhydrostaticity vanishes completely and the G
feld instability cannot occur. Consequently the critical leng
diverges. In other words, the change of the elastic ene
during redistribution of matter is at least of orderO(y4) in
the deviation from the straight liney50. This result has
already been derived in Ref.@16#. The operator of the chemi
cal potential therefore consists~to the lowest nonvanishing
order! only of the local curvature operatorms;vsak that
has eigenfunctionsyk;sin(pkx/L). Thus energy becomes d
agonal in this Fourier representation. We just remark t
these eigenfunctions are completely different from the o
obtained above. The most important fact is that they do
exhibit a divergency of curvature near the tips.

FIG. 9. Logarithmic plot of the curvature near the tips of
critical crack, L55.187LG ,l50. All curves correspond to the
same number of grid points but different spatial distributions. T
solid line possesses the least grid point density near the tips
dotted one the highest. With increasing accuracy the coefficieng
comes closer and closer towards 1.5.
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For b,0 the compressive surface stress is even increa
and the critical length becomes smaller.

The caseb.1 means that the horizontal stress becom
bigger than the vertical loading. Generally the elastic ene
releasedUel /dL;KI

21KII
2 during crack relaxation is maxi

mized if the crack orients perpendicular to the direction
the highest stress. A vertical orientation of the crack is f
bidden by the boundary conditionsy(6L)50; but by taking
on a wavy shape the crack tries to mimic this optimal sha
This tendency becomes stronger with higher values ofPx .
ThereforeLc→0 for b→`.

V. SUMMARY AND DISCUSSION

We calculated expressions for the total energy of a wa
crack that is subjected to a mode I loading. It turned out th
for a loading perpendicular to the crack, this energy becom
smaller, when a critical crack length,Lc55.18LG , is ex-
ceeded. Then the Grinfeld instability can develop and a f
mation of deep grooves along the crack surfaces beco
possible. This deformation is due to a redistribution of mat
and not due to instabilities of the moving crack tip. We d
termined the threshold of instability either using a static, e
ergetic description, either through the early dynamical e
lution via surface diffusion or melting and recrystallization

We generalized the loading condition by adding a str
component parallel to the crack; this modifies the thresh
of instability in a nontrivial way. Furthermore the situatio
of independent crack surfaces has been studied, with the
sult that the parallel configuration is the most unstable o

It turned out that the eigenfunctions of the equations
motion exhibit a singular tip curvature. This corresponds t
nonvanishing stress intensity factorKII

(tot) . The principle of
local symmetry states that during crack propagation p
cesses the direction of extension is oriented such thatKII

(tot)

50 is satisfied. In our model the tip positions are fixed a
we studied only the slower surface kinetics.

The most important outstanding problem is the combi
tion of crack propagation and Grinfeld instability. We me
tion that the start of the Grinfeld instability is beyond th
Griffith threshold, and therefore the deformations natura
happen only in the regime of fast propagating cracks. The

e
he

FIG. 10. Dependence of the critical length on the loading ra
b5Px /P.
0-9
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R. SPATSCHEK AND EFIM A. BRENER PHYSICAL REVIEW E64 046120
fore we briefly discuss dynamical aspects of the Grinf
instability when the tip velocity is not assumed to be sm
However, the stress distribution on the crack surface rem
qualitatively the same as in the static case, apart from s
factors that depend on the tip velocityV @1#. Therefore our
predictions that were performed for a static crack rem
qualitatively correct even in the limit of fast crack extensio

Far from the tips of a long, static crack withL@LG , the
usual Grinfeld spectrum~1! is valid in a local sense. For
fast propagating crack it is slightly modified due to inert
effects. In the laboratory frame of reference it can be writ
as

l5Dvsk
2S 4aq

pLG
uku2ak2D , ~37!

whereq is a dimensionless function that depends weakly
V/VR with the Rayleigh speedVR and the Poisson ration.

One can expect that the linear instability described by
local dispersion relation~37! should be only convective in
the frame of reference of the moving tip due to its slo
development compared to the fast tip motion. Indeed
most unstable mode corresponds to the valuesk;q/LG and
l5lu;Dq4/LG

4 . In the moving frame of reference,l
should be replaced by (l2 iVk) that contains a convectiv
contribution of the orderlc;qV/LG . The ratio lu /lc

;q3D/(LG
3 V) is expected to be small if the velocityV is of

order of the Rayleigh speed. This corresponds only to
convective instability@17#. In this sense, the tip motion itse
is insensitive to the development of the instability behind
tip. Nevertheless, the drastic acceleration of the instab
and the refining of the length scale in the nonlinear regi
@9# make it still conceivable that also the tip motion could
affected by the instability.

We also remark that crack growth by tip propagation
more generally hampered not by surface energya but by the
so-called fracture energyG that represents the resistance
the material to crack advance@1#. This material parameter i
usually bigger than the surface energy, and therefore
some materials it is conceivable that the threshold of G
feld instability ~which still depends on the smaller surfa
energy a) and crack propagation are quite close to ea
other. This increases the chance that the relatively slow
motion is yet influenced by the Grinfeld instability.

The main problem in observing the phenomenon of
Grinfeld instability is that it can be obscured by the fa
crack propagation for crack lengthsL.LG . It arises from
the fact that the crack length~or the applied tension! is the
only tunable parameter, and the two effects cannot be s
rated. However, this dilemma can be solved by another
periment that has already been successfully used in the
@18# and is sketched in Fig. 11. The observed instabilities
the crack shape were interpreted in the framework of
principle of local symmetry and not as a result of the Gr
feld instability. It turned out that at the threshold of instab
ity the energy of a wavy crack is already lower than of
straight crack.

A long thin glass strip is pulled from a hot region~heater!
to a cold one~water bath! at a slow and constant velocityV.
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With a suitable choice of the control parameters, the te
perature decreaseDT between the hot and cold region an
the distanceb between them, a stationary semi-infinite cra
growth with velocityV becomes possible. All elastic strain
arise here from a thermal gradient¹T;DT/b; no external
tension is applied here. For simplicity we choose the s
width also to be of orderb; in other words,b is the only
relevant length scale in the problem. Far from the tip in t
cold and hot regions the material is completely relaxed.
the transition region the characteristic stresses ares
;EaTDT (aT is the coefficient of thermal expansion!. They
result in a stress intensity factorK;sb1/2. By Irwin’s theo-
rem an advance of the crack tip by the lengthds reduces the
elastic energy bydWel;K2/E ds. It is accompanied by an
increase of the surface energy bydWs;ads. Near the Grif-
fith thresholdWel;Ws the propagation velocity is arbitrarily
small; it corresponds to the temperature difference (DT)2

;a/(bEaT
2). On the other hand, the characteristic wav

length of the Grinfeld instability is of the orderLG
;Ea/s2;b, in agreement with the above statement that
length scales are of orderb. By this means it should be
possible to observe the Grinfeld instability in a system o
slowly propagating or even stationary crack.

Alternatively, it could also be possible to observe t
Grinfeld instability in the following way: As it was shown in
Sec. IV, it is possible to alter the critical length by applyin
an additional stress in longitudinal direction together w
the perpendicular loading. This allows us, for example,
keep the crack exactly at the Griffith threshold, but still e
ceeding the critical length for the Grinfeld instability. It is
completely unanswered question how the criterion of lo
symmetry and the contradicting result of divergent tip curv
ture come together in this regime. Further analysis of t
problem is required in the future.

Another unclear point is the exact behavior near the cr
tips. Basically we analyzed long wave perturbations of
crack shape, where the wavelength is of the order of
length of the crack itself. However, in our model of a mat
ematical crack we observed a divergence of the curva
near the crack tips. This stimulates the suspicion of the
portance of this region. In particular, one can speculate
perturbations of a rounded tip, with a wavelength of the
der of the tip radius, may lead to important new featur
including a tip splitting as a small scale instability. This r
quires the introduction of a new degree of freedom, the
dius of curvature of the blunt tip. We stress that even
surface diffusion is slow on the macroscopic scale, it can s
be very efficient on the microscopic scale in the vicinity

FIG. 11. Suggestion of an experiment to observe the Grinf
instability on the surfaces of a slowly propagating crack.
0-10
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FIG. 12. Geometry of the curved crack. Th
branch cut of the analytic functions is indicate
by the thick line.
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the tip. A similar idea has been introduced by Langer@19# to
describe the plastic flow in the vicinity of a crack tip, whe
he used an elliptic crack to incorporate the tip curvature
future goal is to include such a description into our mod
However, in the brittle theory of fracture a mechanism
regularize the tip curvature is not present; consequently
ther research is necessary in this direction to clear up
point.

APPENDIX A: SLIGHTLY CURVED CRACKS

The aim of this section is to derive expressions for
stress field around a curved crack that is subjected to a m
I loading. We generalize the results from@4# to describe the
case of nonparallel crack surfaces as depicted in Fig. 12

Since we deal with a two-dimensional plane strain sit
tion, Muskhelishvili’s analytic function method can be us
@20#. The whole information is contained in two analyt
functionsw(z) and x(z). Stresses can be expressed as
lows:

sxx1syy54 Re@w~z!#, ~A1!

syy2sxx12isxy52@ z̄w8~z!1x~z!#. ~A2!

As usual we reduce the elastic problem to the case of v
ishing stresses at infinity and given loadings@snn#u/ l and
@snt#u/ l along upper and lower crack surfacesyu/ l(x). For
convenience we introduce the function

c~z!ªw̄~z!1zw8~z!1x̄~z!,

where we used the notationw̄(z)ªw( z̄). The boundary val-
ues can be expressed by

snn2 isnt5w~z!1w~z!

1e22iq@~z2 z̄!w8~z!1c~ z̄!2w~z!#.

~A3!

As in Ref. @4# we allow only small deviations from the
straight crack, uyu/ l(x)u!L, and perform a perturbation
04612
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analysis. Therefore we expandw and c with respect to the
‘‘smallness parameter’’yu/ l and retain only first order con
tributions,

w~z!5F0~z!1F1~z!, c~z!5W0~z!1W1~z!, ~A4!

where the functionsFi(z) andWi(z) are everywhere analytic
apart from the straight crack line@2L,L# and are of orderi
in the expansion parameteryu/ l . We introduce the common
abbreviation

w6~x!5 lim
«→06

w~x1 i«!. ~A5!

To first order one can write

w„x1 iyu~x!…5F0
1~x!1 iyu~x! F0

18~x!1F1
1~x!,

w„x1 iy l~x!…5F0
2~x!1 iy l~x! F0

28~x!1F1
2~x!,

and similarly forc. Noting that exp(22iq)5122iyu/l8 (x) to
first order, the boundary values on the straight cut, Eq.~A3!,
become

@snn2 isnt#u/ l5F0
6~x!1 iyu/ l~x! F0

68~x!1F1
6~x!

12iyu/ l~x! F0
68~x!1W0

7~x!

2 iyu/ l~x! W0
78~x!1W1

7~x!

22iyu/ l8 ~x!„W0
7~x!2F0

6~x!….

Thus separating zero and first order give

@snn
(0)2 isnt

(0)#u/ l5F0
6~x!1W0

7~x!,

F1
6~x!1W1

7~x!5@snn
(1)2 isnt

(1)#u/ l2„iyu/ l~x!@F0
6~x!1W0

7#8

12i $yu/ l~x!@F0
6~x!2W0

7~x!#%8….

Here@s ( i )#u/ l are the contributions of orderi with respect to
yu/ l to the prescribed stresses@s#u/ l . The boundary values o
@F0(x)1W0(x)# and @F0(x)2W0(x)# are given by
0-11
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R. SPATSCHEK AND EFIM A. BRENER PHYSICAL REVIEW E64 046120
@F0~x!1W0~x!#11@F0~x!1W0~x!#2

5@snn
(0)2 isnt

(0)#u1@snn
(0)2 isnt

(0)# l ,

@F0~x!2W0~x!#12@F0~x!2W0~x!#2

5@snn
(0)2 isnt

(0)#u2@snn
(0)2 isnt

(0)# l .

Using the formula of Muskhelishvili@20#,

F0~z!5
1

4p~z1L !1/2~z2L !1/2

3E
2L

L @snn
(0)2snt

(0)#u1@snn
(0)2snt

(0)# l

x2z
~L22x2!1/2dx

1
1

4p i E2L

L @snn
(0)2 isnt

(0)#u2@snn
(0)2 isnt

(0)# l

x2z
dx,

~A6!

W0~z!5
1

4p~z1L !1/2~z2L !1/2

3E
2L

L @snn
(0)2snt

(0)#u1@snn
(0)2snt

(0)# l

x2z
~L22x2!1/2dx

2
1

4p i E2L

L @snn
(0)2 isnt

(0)#u2@snn
(0)2 isnt

(0)# l

x2z
dx.

~A7!

The second integral appearing in both of these two formu
does not exhibit the usual square root singularity and
comes only relevant in the case of nonparallel crack surfa

Basically we are interested in the tangential componen
the stress tensor,

stt5Re„2w~z!2e22iq@~z2 z̄!w8~z!1c~ z̄!2w~z!#….

~A8!

Evaluating the limiting values of Eqs.~A6! and ~A7!, we
obtain to zeroth order

@stt
(0)#u/ l5@stt

(0)#u/ l , ~A9!

where we have defined the function
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@stt
( i )#u/ l5@snn

( i )#u/ l7
1

p~L22x2!1/2

3PE
2L

L @snt
( i )#u1@snt

( i )# l

t2x
AL22t2dt

1
1

p
PE

2L

L 2@snt
( i )#u1@snt

( i )# l

t2x
dt. ~A10!

In the same way one can calculate the first order contri
tion, but the result is quite lengthy. In our case we hav
uniform mode I loading at infinity, i.e., up to the first orde

@snn#u/ l5@snn
(0)#u/ l1@snn

(1)#u/ l52P, ~A11!

@snt#u/ l5@snt
(0)#u/ l1@snt

(1)#u/ l52Pyu/ l8 ~x!. ~A12!

Thus the normal traction is constant and the shear stress
only a first order contribution. This simplifies the expressio
and one finally obtains, after some simple transformatio
@stt

(0)#u/ l52P, as expected for the straight crack, and

@stt
(1)#u/ l5@stt

(1)#u/ l6
2PL2

~L22x2!3/2
yu/ l~x!. ~A13!

The final result is therefore as follows: A curved cra
loaded bysyy

` 5P and s i j
`50 for all other components a

infinity exhibits total stresses at the interfaces of the cra
given by

@snn
(tot)#u/ l50, ~A14!

@snt
(tot)#u/ l50, ~A15!

@stt
(tot)#u/ l5@stt

(0)#u/ l1@stt
(1)#u/ l ~A16!

to first order, using the expressions~A9!–~A13!. Here we
have already added the homogeneous stress caused b
mode I loading at infinity.

APPENDIX B: EQUIVALENCE
OF ENERGY REPRESENTATIONS

To show the equivalence of the different approaches
calculate the total energy of a wavy crack~8! and the direct
integration of the chemical potential~10!, it is sufficient to
derive the chemical potential from the first approach

@ms~x!#u/ l57
vs

2

dU

dy~x!
~B1!

and to compare it with the original expression~10!. Since
this is straightforward forUs andUels , we restrict our con-
0-12
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siderations toUelu and give only some brief hints for deduc
tion. Using Eqs.~7! and ~8!, we obtain

Uelu52
12n2

E

2P2

p E
L852L

L E
x52L

L8 E
t52L

L8 1

L1L8
A L1x

L82x

3A L1t

L82t
y8~x!y8~ t ! dt dx dL8. ~B2!

The main idea is to interpret the triple integral as volum
integral. Rewriting it as

E
L852L

L E
x52L

L8 E
t52L

L8
•••dt dx dL8

5E
t52L

L E
x52L

L E
L85max(t,x)

L

•••dL8 dx dt, ~B3!

allows us to perform the explicit calculation of the innermo
integral. For simplicity we ignore the difficulties arising from
the exchange of the integration order. In fact, they are
sponsible for the appearance of the principal value integr
but we treat all integrals as~divergent! ordinary integrals,
because we are basically interested in a structural agree
of the expressions. However, all calculations can easily
extended to overcome this limitation.

We conclude
y

e

04612
t

-
ls,

ent
e

Uelu@y1dy#2Uelu@y#

5
2P2~12n2!

Ep E
t52L

L

dy8~ t !E
x52L

L

2y8~x!

3H lnS L22xt2A~L22t2!~L22x2!

L D 2 lnux2tuJ dx dt,

~B4!

where only first order contributions have been taken i
account. Another integration by parts@notice thaty(6L)
50# and further algebraic manipulations lead to

Uelu@y1dy#2Uelu@y#52
4P2~12n2!

pE E
t52L

L

dy~ t !

3E
x52L

L y8~x!

t2x
AL22x2

L22t2
dx dt.

Now the functional derivative can be immediately read:

@melu#u/ l56
2vsP

2~12n2!

pEAL22t2 E
x52L

L y8~x!

t2x
AL22x2 dx.

It matches the third term in Eq.~10!, of course apart from the
principal value. This completes the proof.
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